CEL Hybrid Model 3-D Application

Analyze and Simulate the Movement Behavior of Juvenile Salmon in the Complex Approach Hydraulic Fields of Fish Bypass Systems

Method for Analyzing & Predicting Juvenile Salmon Swim Path Selection

CEL Hybrid Modeling

Numerical Fish Surrogate

R. Andrew Goodwin
Ph.D. Graduate Student
Cornell University
Civil & Environmental Engineering
Environmental & Water Resources
Systems Engineering
rag12@cornell.edu

Dr. John M. Nestler
Research Ecologist

USAE Engineering Research &
Development Center
Waterways Experiment Station
Fisheries Engineering
nestlej@wes.army.mil

Acknowledgements

Dr. Pete Loucks

Systems Techniques

Civil & Environmental Engineering Cornell University

Dr. Ray Chapman

Contravariant Mathematics
Ray Chapman & Associates

Carl Schilt

Fish Mechanosensory Systems MEVATEC

Dr. Larry Weber

CFD Modeling

Iowa Institute of Hydraulic Research University of Iowa

Dr. Yong Lai

CFD Modeling

Iowa Institute of Hydraulic Research University of Iowa

Terry Gerald

Computer Science
USAE ERDC WES

Mathematical Description of Movement

Passive Particle

$$\mathbf{X}_{t+1} \equiv \mathbf{X}_{t} + \mathbf{U}^*\mathbf{D}t$$
 $\mathbf{Y}_{t+1} \equiv \mathbf{Y}_{t} + \mathbf{V}^*\mathbf{D}t$
 $\mathbf{Z}_{t+1} \equiv \mathbf{Z}_{t} + \mathbf{W}^*\mathbf{D}t$

Active 'Particle'

$$\mathbf{X}_{t+1} = \mathbf{X}_{t} + (\mathbf{U} + \mathbf{U}_{fish}) * \mathbf{D}t$$
 $\mathbf{Y}_{t+1} = \mathbf{Y}_{t} + (\mathbf{V} + \mathbf{V}_{fish}) * \mathbf{D}t$
 $\mathbf{Z}_{t+1} = \mathbf{Z}_{t} + (\mathbf{W} + \mathbf{W}_{fish}) * \mathbf{D}t$

C = { e.g., velocity and/or acceleration vectors, temperature, dissolved oxygen, turbulent kinetic energy, turbulent length scales, pressure, etc. }

Integration for Analysis and Simulation

Couple:

Numerical Fish Surrogate

3-D Biological Tracking Data

Numerical Fish Surrogate Methodology:

Data Integration Data Mining and Analysis Simulation Optimization

Graphics

Boundary of 3-D Computational Fluid Dynamics (CFD) Model Grid

Computational Fluid Dynamics Simulation of Flow

Flow Conditions Near Orifice of Surface Bypass Collector

Integration of CFD and Tracking Information

Numerical Fish Surrogate (Real System)

NFS Data Integration Module

- Locates points in distorted 3-D CFD computational cells
 - Calculation of and interpolation of flow values to fish-oriented sensory points
- Determines whether points are in-bounds or out-of-bounds
- Calculates 19+ fish movement variables in 3 reference frames
- Calculates 146+ potential forcing functions
 - 44 variables at user-defined number and location of sensory points
- Uses Cartesian-contravariant space for efficient computations
 - Large data sets V-E-R-Y memory intensive
 - Improves program speed
 - Reduces computational requirements
- 7,000+ lines of FORTRAN 90 code
- Advanced 3-D Tecplot and MATLAB graphics
 - Graphical analyses of multi-scaled data

Separate Passive Transport & Volitional Swimming

Obtain Position Pairs

Observations 1-8

Note: Autocorrelation & other biases

For a constant time step:

New Position_x = Old Position_x +
$$u$$
 +
$$(u_{fish} + random \# + biases)$$

Multiple Regression Analysis (x, y, z):

$$u_{fish} = b + \alpha_1 \text{ (velocity)} + \beta_2 \text{ (acceleration)} + \delta_3 \text{ (turbulence intensity)} + \epsilon_4 \text{ (turbulence dissipation)} + \phi_i \text{ (other hydraulic variables)} + \gamma_i \text{ (secondary variables)}$$

Virtual System Concept

i,j,k

i,j,k

 $RSquare_R \approx RSquare_V$ $U_{fishR} \approx U_{fishV}$ $Residuals_R \approx Residuals_V$

Verify on Independent Data Set

$$X_t = X_{t-1} + (Dt * (u + u_{fish}))$$

random # + Biases_R))

Biases_R » Biases_V

$$X_t = X_{t-1} + (Dt * (u + u_{fish}))$$

random # + Biases_V))

Numerical Fish Surrogate (Virtual System)

NFS Simulation Module

- Fish movement relative to fish-orientated, not CFD, reference frame
- Uses Cartesian-contravariant space for efficient computations
 - Moves points (fish) within and between distorted cells and multiple blocks (for multi-block CFD)
 - Location of and interpolation of flow values to fish-oriented sensory points
 - Improves speed of V-E-R-Y memory intensive simulations
- 10,000+ lines of FORTRAN 90 code
 - 1500+ lines for behavioral (stimuli-response) rules
- Structured for quick substitution/revision of behavioral rules
- Structured for optimization procedure using NFS Data Integration Module
- 3-D animation

